JToH's Joke Towers Wiki

Hello person, and welcome to the JToH's Joke Towers Wiki, <INSERT USERNAME HERE>!
This is a fanmade wiki which branches off of the JToH wiki, and none of this stuff is actually canon to JToH. All content here is fanmade. Before contributing, please look at the wiki's Rules, as well as the Manual of Style and the Difficulty Rules if you’re planning on making an unofficial difficulty. However, PLEASE focus on towers. For more information you can go to the Home page of the wiki and/or the About page.


Also, Viranenthusiast has made a main page revamp.

READ MORE

JToH's Joke Towers Wiki
JToH's Joke Towers Wiki


no contest here, literally cheese XD

gofdishgidsfdhidf

bruh

bruh

bruh

bruh

bruh

bru8h

bruh

bruh

bruh

bruh

A_0 EXTENDE time >:) (BEYOND A_0 (my version cause i realized TooLarge exists for Effortful as going beyond A_0)

A_0 jump

A_1 jump

A_A_0 jump

A_A_A_1 jump

B_5_0 jump (B_n = A_A_A_... xn) (B_a_c a = A_A_A_... c = _c)

B_10_15 jump

B_A_5_1 jump

B_A_A_10_10 jump

B_B_10_10_10 jump (oh gosh this is gonna get so confusing)

B_B_B_B_B_10_10_10_10_10_10 jump (i'm losing my grip on reality)

C_10_10 (C_n = B_B_B_... xn) (C_a_b a = B_B_B_... b = _b (literally the same)

C_B_A_0_0_0 jump (:youserious:)

C_C_C_B_B_B_A_A_A_0_0_0_0_0_0_0 jump (letter notation go brrr)

    • is this not effortful ^ ^ ^
    • i think you get the idea

D_10_10 jump

E_10_10 jump

F_10_10 jump

Z_10_10 jump

(27)_10_10 jump (number encased in brackets is another symbol like letters -_-)

(10^100)_10_10 jump (oh dear)

(Ω)_10_10 jump (absolute infintiy)

    • losing my patience

(A_0)_10_10 jump (oh no... we're doomed!)

(B_0)_10_10 jump (yeah, try to visualize this, you can't!)

(C_B_A_10_10_10)_10_10 jump (very random)

    • U good writer?
    • yeh i'm all good :)
    • watch out!
    • ???!! AAHHH

((A_0)_10_10)_10_10 jump (uh oh)

((5))_10_10 ( ((n))_x_y n = (((...)_?_?)_?_?)_?_? x = ((n)...(n))_?_? y = ?_y ) (you're welcome :])

((10))_10_10 jump

((Ω))_10_10 jump

((A_0))_10_10 jump

((B_0))_10_10 jump

((((10))_10_10))_10_10 jump

(((10)))_10_10 jump (you get the idea *hopefully*)

(((A_0)))_10_10 jump

((((A_0))))_10_10 jump

(((((A_0)))))_10_10 jump

[10, 10, 10, 10]_10_10 jump (after all those years, we've come across BEAF notation once more except for a difference you already know)

[10, 10, 10, 10, 100]_10_10 jump

[10, 10, 10, 10, A_0]_10_10 jump

[10, 10, 10, 10, {A_0}_10_10]_10_10 jump (i promise, this is not a template because it looks purple when viewing source page)

[10, 10, 10, 10, 10, 10]_10_10 jump ([])

[10, 10, 10, 10, 10, A_0]_10_10 jump

[10, 10, 10, 10, 10, 10, 10, 10, A_0]_10_10 jump

[10, 10[2]10]_10_10 jump

[10, 10[3]10]_10_10 jump

[10, 10[A_0]10]_10_10 jump

[10, 10[1[2]2]10]_10_10 jump

[10, 10[1[1[2]2]2]10]_10_10 jump

[10, 10[1\2]10]_10_10 jump

[10, 10[1[2]2\2]10]_10_10 jump

[10, 10[1\3]10]_10_10 jump (approaching madness)

[10, 10[1\10]10]_10_10 jump

[10, 10[1\A_0]10]_10_10 jump

[10, 10[1\1[2]2]10]_10_10 jump

[10, 10[1\1\2]10]_10_10 jump

[10, 10[1\1\3]10]_10_10 jump

[10, 10[1\1\A_0]10]_10_10 jump

[10, 10[1\1\1[2]2]10]_10_10 jump

[10, 10[1\1\1\2]10]_10_10 jump

[10, 10[1\1\1\1\2]10]_10_10 jump

[10, 10[1\1\1\1\1\1\1\2]10]_10_10 jump

[10, 10[1-2]10]_10_10 jump (approaching madness 2)

[10, 10[1-2]A_0]_10_10 jump

[10, 10[2-2]10]_10_10 jump

[10, 10[A_0-2]10]_10_10 jump

[10, 10[1[2]2-2]10]_10_10 jump

[10, 10[1\2-2]10]_10_10 jump

[10, 10[1-3]10]_10_10 jump

[10, 10[1-4]10]_10_10 jump

[10, 10[1-10]10]_10_10 jump

[10, 10[1-100]10]_10_10 jump

[10, 10[1-10^100]10]_10_10 jump

[10, 10[1-10{100}10]10]_10_10 jump

[10, 10[1-G64]10]_10_10 jump

[10, 10[1-TREE(3)]10]_10_10 jump

[10, 10[1-SSCG(3)]10]_10_10 jump

[10, 10[1-SCG(13)]10]_10_10 jump

[10, 10[1-RAYO(10^100)]10]_10_10 jump

[10, 10[1-OBLIVION]10]_10_10 jump

[10, 10[1-UTTER OBLIVION]10]_10_10 jump

[10, 10[1-FINITE]10]_10_10 jump

[10, 10[1-∞]10]_10_10 jump

[10, 10[1-ω]10]_10_10 jump

[10, 10[1-ε_0]10]_10_10 jump

[10, 10[1-ζ_0]10]_10_10 jump

[10, 10[1-η_0]10]_10_10 jump

[10, 10[1-Γ_0]10]_10_10 jump

[10, 10[1-Ψ(Ω, Ω, Ω)]10]_10_10 jump

[10, 10[1-K]10]_10_10 jump

[10, 10[1-Ω]10]_10_10 jump (absolute infinity)

    • go beyond because this am is pm)))()()))(()()(

[10, 10[1-A_0]10]_10_10 jump

[10, 10[1-(A_0)_10_10]10]_10_10 jump

[10, 10[1-[10, 10[1-2]10]_10_10]10]_10_10 jump

    • tis is taking waty too longg983498943

[10, 10[1-1-2]10]_10_10 jump

[10, 10[1-1-1-2]10]_10_10 jump

[10, 10[1-1-1-1-1-1-1-2]10]_10_10 jump

[10, 100/2]_10_10 jump

[10, 100 (1)\ 2]_10_10 jump

Limit of BEAF n_10_10 jump (no more intense typing th)

TAR(3)|_10_10 jump

TAR(4)|_10_10 jump

TAR(5)|_10_10 jump

TAR(TAR(3)|_10_10 jump

TAR(TAR(TAR(TAR(TAR(TAR(3))))))|_10_10 jump

Dekotar|_10_10 jump

Kilotar|_10_10 jump

Bintar|_10_10 jump

Tarintar ((Dekotar-1)-intar C's)|_10_10 jump (what difficulty is this?)

Loader's Number D^5(99)|_10_10 jump

Rayo's Number Rayo(10^100)|_10_10 jump

Oblivion|_10_10 jump

Utter Oblivion|_10_10 jump

Finite|_10_10 jump

∞|_10_10 jump

ω|_10_10 jump

ε_0|_10_10 jump

ζ_0|_10_10 jump

η_0|_10_10 jump

Γ_0|_10_10 jump

Ψ(Ω, Ω, Ω)|_10_10 jump

Weakly Compact Cardinal (K)|_10_10 jump

Ω|_10_10 jump

A_0|_10_10 jump (the limit?)

A_0|_10_10|_10_10 jump (apparently not)

10||_10_10 jump (it starts to get faster)

10||_10_10||_10_10 jump (this is not the end)

10|||_10_10 jump

10|(10)|_10_10 jump (you should know by now)

10|(10|(10)|_10_10)|_10_10 jump (wtf)

10|((10))|_10_10 jump (not again)

10|{TAR(3)}|_10_10 jump (oh lord)

10|{A_0}|_10_10 jump (back at it again)

10|{10|{A_0}|_10_10}|_10_10 jump (this is gonna get so complex like, we're nesting functions with functions)

10|{.{A_0}}|_10_10 jump (no template)

10|{.{A_0}.}|_10_10 jump (soon)

10|[A_0]|_10_10 jump (if you know, you know)

10/5/_10_10 jump (...)

10/10/_10_10 jump (this is it, we're breaking it all)

10\10\_10_10 jump

10!10!_10_10 jump

10@10@_10_10 jump

10?10?_10_10 ? = A_0th symbol jump (welcome to the era of no return)

10(?2)10(?2)_10_10 ?2 = 10?10?_10_10 jump (refer to the previous for more understanding)

10(?3)10(?3)_10_10 ?3 = 10(?2)10(?2)_10_10 jump (again)

10(?^2)10(?^2)_10_10 ?^2 = [10(?(?))10(?(?))_10_10 "second ?" = (10?10?_10_10 "?" = A_0)] jump (it's so complex, no more hints)

10(?^3)10(?^3)_10_10 jump (what i told you)

10(?^?)10(?^?)_10_10 jump (we're not stopping)

10(?^^?)10(?^^?)_10_10 jump (i swear we're not done)

10(?{?}?)10(?{?}?)_10_10 jump (i know what i'm doing)

10(TAR(3)|?)10(TAR(3)|?)_10_10 jump

10(A_0|?)10(A_0|?)_10_10 jump (this won't stop)

10(10(A_0|?)10(A_0|?)_10_10|?)10(10(A_0|?)10(A_0|?)_10_10|?)_10_10 jump (it's time)

10(...|?)10(...|?)_10_10 x10 OR SupA(10) jump (new function)

  • SupA(A_0) jump (keep going)
  • SupA(SupA(A_0) jump (oh no 2)
  • SupA^SupA(A_0) jump (a cycle is near)
  • SupA|(...|?)SupA(...|?)SupA(A_0) xA_0 OR MegA(A_0) jump (there's no stopping)
  • MegA(MegA(A_0)) jump
  • GigA(A_0) jump
  • TerA(A_0) jump
  • PetA(A_0) jump
  • ExA(A_0) jump
  • ZettA(A_0) jump
  • YottA(A_0) jump
  • RealitA(A_0) jump
  • 50thA(A_0) jump
  • 100thA(A_0) jump
  • A_0thA(A_0) jump (i can keep going, i'll need a reference sheet though)
  • A_0thA(A_0)thA(A_0) jump (bruh)
  • A_0thA^A_0thA(A_0) jump
  • A_0thA^^A_0thA(A_0) jump
  • A_0thA{A_0thA}A_0thA(A_0) jump (they are barely making any sense if you don't know where this came from (scroll down for reference sheet)
  • A_0(A_0thA A_0) A_0 jump (ok yeah)
  • ...(A_0thA A_0) A_0 xA_0 jump
  • ...(A_0thA A_0) A_0 xA_0thA(A_0) jump (???)
  • A_0(1st A_0thA A_0) A_0 jump
  • ...(A_0thA A_0thA A_0) A_0 xA_0(A_0thA A_0thA A_0) A_0 jump (*sigh*)
  • A_0(1st A_0thA A_0thA A_0) A_0 jump
  • A_0(1st A_0thA A_0thA A_0thA A_0) A_0 jump
  • A_0(A_0thA (2) A_0thA A_0thA A_0thA A_0) A_0 jump
  • A_0(A_0thA (3) A_0thA A_0thA A_0thA A_0) A_0 jump
  • A_0(A_0thA (A_0thA(A_0) A_0thA A_0thA A_0thA A_0) A_0 jump
  • A_0(A_0thA (A_0thA(A_0)-A_0thA(A_0)) A_0thA A_0thA A_0thA A_0) A_0 jump
  • A_0(A_0thA2 A_0) A_0 jump
  • A_0(A_0thA A_0thA2 A_0) A_0 jump
  • A_0(A_0thA (1-2) A_0thA A_0thA A_0thA2 A_0) A_0 jump
  • A_0(A_0thA2 A_0thA2 A_0) A_0 jump
  • A_0(A_0thA2 A_0thA2 A_0thA2 A_0) A_0 jump
  • A_0(A_0thA2 (A_0thA(A_0)) A_0thA2 A_0thA2 A_0) A_0 jump
  • A_0(A_0thA3 A_0) A_0 jump
  • A_0(A_0thA3 A_0thA3 A_0) A_0 jump
  • A_0(A_0thA4 A_0) A_0 jump
  • A_0(A_0thA5 A_0) A_0 jump
  • A_0(A_0thA10 A_0) A_0 jump
  • A_0(A_0thAA_0 A_0) A_0 jump
  • A_0(A_0thA(A_0thA(A_0)) A_0) A_0 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x10 jump (oh no 3)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0 jump (THIS IS THE CYCLE!)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0 jump (prepare yourselfs)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 xA_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... xA_0 jump (ok)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 1 jump (Basically, this cycle is one full A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... of repeats and repeats over a span of A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... iterations PER cycle so yeah...)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 1.1 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 1.2 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 2 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 2.4 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 4 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: 10 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: A_0 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: A_0(A_0thA A_0) A_0 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... jump (...)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 1 (This phrase shifts the logic of the cycle increasingly over A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... times that repeat and go on for A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... heat deaths and iterations for Phrase 1, making it more powerful, don't underestimate that. Phrase 1.1 is unreachable following this as the amount of shifts to the logic is indescribable to compute and to think of. You're not surviving this)
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 1.1 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 1.2 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 2 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 2.4 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 4 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: 10 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: A_0 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: A_0(A_0thA A_0) A_0 jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... jump
  • A_0(A_0thA(A_0(A_0thA(...) A_0) A_0) A_0 x... x... Cycle: ... Phrase: ... jump (...)

The Baxiomatic Limit (The End and Limit of A_0 and Beyond A_x)

    • I don't even know how you're able to go beyond the A_x function like, how is that even possible?
    • i just have a good gaming chair
    • Makes sense.

Welp, there has been over 200 entries to this. I'mrur4giugrebebaebhjrgesrngrehgernh- CONNECTION DROPPED

IDK if The Baxiomatic Limit is easier or on the same level as The Final Difficulty (you may see, i'm not particularly good at classifying obstacles of class and difficulty)

Reference sheet used 0 to NEVER (my way)